$(2\times10=20)$

[Total No. of Questions - 9] [Total No. of Printed Pages - 2] Dec-22-0128

CE-302 (Mechanics of Fluids-I)

B.Tech-3rd (CBCS)

Time: 3 Hours

Max. Marks: 60

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt Five questions in all, selecting one question from each section A. B, C and D. Q.No.9 is compulsory.

SECTION-A

- 1. (a) How does viscosity of a fluid vary with temperature? (5)
 - (b) Define surface tension. Establish relationship among surface tension (σ), pressure droplet of liquid in excess of outside pressure (p), dia. of droplet d.
- 2. Explain the procedure of finding hydrostatic forces on curved surfaces. (10)

SECTION B

- 3. A source and a sink of strength 4 m²/s and 8 m²/s are located at (-1, 0) and (1,0) respectively. Determine the velocity and stream function at a point P (1, 1) which is lying on the flownet of the resultant stream line. (10)
- 4. State Bernoulli's theorem for steady flow of an incompressible fluid. Derive an expression for Bernoulli's theorem from first principle and state the assumptions made for such a derivation.

 (10)

SECTION C

5. Prove that the discharge through a triangular notch or weir is given by $\theta = \frac{8}{3} + \frac{\theta}{3} + \frac{130}{3}$

 $Q = \frac{8}{15} C_d \times ten \frac{\theta}{2} \times \sqrt{2} g \times H^{3/2}$

Where H = head of water over the notch or weirQ = angle of notch or weir. (10) 6. The pressure difference ΔP in a pipe of diameter D and length l due to turbulent flow depends on the velocity V, viscosity μ , density ρ and roughness k. Using Buckingham's π -theorem, obtain an expansion for ΔP .

SECTION D

- 7. (a) What is a syphon? Where is it used? Explain its action. (5)
 - (b) Explain the phenomenon of Water Hammer. (5)
- 8. Determine the difference in the elevations between the water surfaces in the two tanks which are connected by a horizontal pipe diameter 300 mm and length 400 m. The rate of flow of water through the pipe is 300 litres/s. Consider all losses and take the value of f = .008.

SECTION E

(Compulsory Questions)

- 9. Answer the following questions:
 - (i) State the Newton's law of viscosity.
 - (ii) Difference between specific weight and specific volume of fluid.
 - (iii) What is a fluid?
 - (iv) State the Pascal's law.
 - (v) What do you understand by 'Total pressure' and 'Center of pressure'?
 - (vi) Define the terms 'Meta-centric height'.
 - (vii) Define the terms 'steady flow and unsteady flows.
 - (viii) What is Venturimeter?
 - (ix) Define Vena- contracta.
 - (x) What do you mean by 'viscous flow'?